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The structures and energetics of nearly symmetric modes and nearly baroclinic modes
are analysed in detail to examine their instability mechanisms. It is shown that the
nearly symmetric modes have their cross-band circulations slanted mainly between
the along-band absolute-momentum surface and buoyancy surface of the basic state.
Their growth is thus supported mainly by the symmetric-type energy conversion
that transports energy from the basic-state along-band velocity and buoyancy to the
perturbation along-band velocity and buoyancy, respectively, and then to the cross-
band circulation. However, as the band orientations are tilted slightly away from
the basic shear, the growth is also assisted by the baroclinic-type energy conversion
that transports energy from the basic-state buoyancy to the perturbation buoyancy
via the along-band advection and then to the cross-band circulation. When the band
orientation is tilted to the warm (or cold) side of the basic shear, the baroclinic-
type energy conversion smooths (or sharpens) the near-boundary structures and
thus reduces (enhances) the effect of diffusive damping, especially near the non-slip
boundaries. This explains why in the presence of diffusivity the symmetric instability
yields to the nearly symmetric instability with the band orientation tilted slightly
to the warm side of the basic shear. The nearly baroclinic modes transport warm
air northward with rising motion and cold air southward with sinking motion,
so their growth is supported mainly by the baroclinic-type energy conversion.
Since the band orientations are not exactly perpendicular to the basic shear, the
growth is also assisted by two additional energy conversions: (i) from the basic-state
buoyancy through the cross-band horizontal advection to the perturbation buoyancy;
and (ii) from the basic-state along-band velocity to the perturbation along-band
velocity. When the band orientation is tilted, by nearly 90◦ or less, to the warm
(or cold) side of the basic shear, the two additional energy conversions smooth (or
sharpen) the near-boundary structures and thus reduce (enhance) the effect of diffusive
damping, especially near the non-slip boundaries. This explains why the baroclinic
instability yields to the warm-side tilted nearly baroclinic instability in the presence of
diffusivity.

1. Introduction
In the inviscid and hydrostatic limit, the instabilities of the Eady baroclinic basic

state in three-dimensional space is controlled by a single external parameter: the
Richardson number Ri (Stone 1966). The presence of diffusivity (viscosity and
conductivity) introduces two additional external parameters: the Ekman number
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Ek and Prandtl number Pr. For wide ranges of these external parameters
(1/4< Ri � 1, 0.0001 � Ek � 0.02 and 0.5 � Pr � 2.0), normal-mode growth rates were
examined in Xu (2003, referred to as part 1 hereafter) as functions of two internal
parameters: the horizontal wavelength l and tilt angle α of the mode orientation with
respect to the basic shear (measured negative clockwise from the basic-shear direction
to the y-direction, that is, to the warm side of basic shear within 90◦). The computed
growth rate patterns exhibited new features that differ from the inviscid results of
Stone (1966, 1970), although all the differences diminish in the inviscid and hydrostatic
limit. Major new features can be summarized as follows. (i) When Ek increases from
0 to 0.01 and Ri is between 0.25 and the transitional Richardson number (Ri∗ = 0.95
in the inviscid limit), the global maximum point in the growth rate pattern shifts
away from the symmetric axis (α = 0) to the negative side (α < 0) and the associated
unstable mode changes from purely symmetric to nearly symmetric. (ii) When Ek
increases from 0 to 0.01 and Ri is larger than the inviscid transitional Richardson
number (Ri∗ = 0.95), the global maximum point shifts away from the baroclinic axis
(α = −90◦) to the positive side (α > −90◦) and the associated unstable mode changes
from purely baroclinic to nearly baroclinic. The nearly symmetric modes and nearly
baroclinic modes are new in the sense that they cannot be fully explained by the
classic theories of symmetric and baroclinic instabilities. Their instability mechanisms
are largely unexplored, although the energy conversions of nearly symmetric modes
with weak diffusivity and weak instability were examined by Miller & Antar (1986).
This is the motivation of this paper.

As a sequel to part 1, this paper is intended to examine the structures of the above
two types of unstable modes and to study their instability mechanisms and related
energetics, so that physical understanding can be obtained for the aforementioned
new features in the growth rate patterns. The paper is organized as follows. The next
section presents the equations to be used for the analyses and describes the plan of
the study. The symmetric modes are examined first in § 3, and then compared with the
warm-side tilted modes (α < 0) in § 4 and with the cold-side tilted modes (α > 0) in § 5.
The nearly baroclinic modes are examined in § 6. Volume-averaged energy analyses
are presented in § 7. Summary remarks follow in § 8.

2. Equations for the analyses and plan of the study
2.1. Equations for mode structure analyses

The non-dimensional system (3.1a–c) in part 1 can be rewritten in the following
form:

Dt ζ = G + EkDζ, (2.1a)

Dt v = J (ψ, M) + EkDv, (2.1b)

Dt b = J (ψ, B) − v∂yB + EkDb/Pr, (2.1c)

where Dt ≡ ∂t + (z − 0.5) sin α∂x, ζ ≡ ∂zu − a2∂xw = Dψ, G ≡ ∂zv − Ri∂xb, D ≡ a2∂2
x +

∂z
2, J (ψ, •) ≡ ∂xψ∂z(•) − ∂zψ∂x(•) = −(u∂x + w∂z)(•), a ≡ H/L = r Ri1/2 is the aspect

ratio, and r ≡ f/N is the ratio between inertial and buoyancy frequencies (see (2.4)–
(2.9) of part 1). Here, M ≡ x + (z − 0.5) cos α is the basic-state along-band absolute-
momentum, that is, f x + V scaled by f L, while B ≡ (x cosα − y sin α)/Ri + z+
constant is the basic-state buoyancy, that is, gΘ/Θ◦ scaled by HN2.

Note that G is the vorticity generation term in (2.1a) that represents a torque
(positive for a clockwise rotation) composed of two parts: the buoyancy torque −Ri∂xb
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and the inertial-force torque ∂zv, where v represents the cross-band Coriolis force
associated with the along-band velocity. In (2.1b), J (ψ, M) represents the generation
of v due to the cross-band advection of the basic-state M . In (2.1c), J (ψ, B) and
−v∂yB represent the generation of b due to the cross-band advection and along-band
advection of the basic-state B , respectively. The slope of the M-surface is −1/ cos α

in three-dimensional space as well as in the cross-band vertical plane (x, z). The slope
of the B-surface is 1/Ri (viewed from the warm side perpendicular to the basic shear)
in three-dimensional space, but is − cos α/Ri in the cross-band vertical plane. It is
easy to see that J (ψ, M) is zero when the streamline is parallel to the M-surface, and
is positive (or negative) when the streamline is downward and steeper (or less steep)
than the M-surface or when the streamline is upward and less steep (or steeper) than
the M-surface in the cross-band vertical plane. The sign of J (ψ, B) can be determined
by a similar rule. These simple rules will be used for the visual analyses of the mode
structures in this paper.

2.2. Energy equations

Averaging ψ(2.1a), v(2.1b) and bRi(2.1c) in the horizontal over one wavelength yields
the following energy equations:

∂tK2 = C2 + ∂zF2 + D2, (2.2a)

∂tKv = Cv + ∂zFv + Dv, (2.2b)

∂tPb = Cb + 〈vb〉 sin α + ∂zFb + Db, (2.2c)

where 〈(•)〉 denotes the horizontal average of (•), K2 = 〈u2 + a2w2〉/2 is the kinetic
energy associated with the cross-band circulation, Kv = 〈v2〉/2 is the kinetic energy
associated with the along-band velocity perturbation, and Pb = 〈b2〉Ri/2 is the
potential energy associated with the buoyancy perturbation. On the right-hand side
of (2.2), the three energy conversion terms are defined by

C2 ≡ 〈uv〉 + 〈wb〉Ri − 〈uw〉 sin α, (2.3a)

Cv ≡ −〈uv〉 − 〈vw〉 cosα, (2.3b)

Cb ≡ −〈wb〉Ri − 〈ub〉 cosα; (2.3c)

the energy fluxes in the three vertical gradient terms are defined by

F2 ≡ Ek〈u∂zu + a2w∂zw〉 − Ri〈wp〉, (2.4a)

Fv ≡ Ek〈v∂zv〉, (2.4b)

Fb ≡ Ek〈b∂zb〉Ri/P r; (2.4c)

and the three energy dissipation terms are defined by

D2 ≡ −Ek〈a2(∂xu)2 + (∂zu)2 + a2[a2(∂xw)2 + (∂zw)2]〉, (2.5a)

Dv ≡ −Ek〈a2(∂xv)2 + (∂zv)2〉, (2.5a)

Db ≡ −Ek〈a2(∂xb)2 + (∂zb)2〉Ri/P r. (2.5a)

The periodic lateral boundary condition and integration by parts are used in the
derivation of the above results. Equation (2.7a) of part 1 is used in the derivation of
(2.2a).

The energy conversion terms Cv and Cb in (2.3b, c) are derived from the two
generation terms in (2.1b, c), respectively. The first two terms of C2 in (2.3a) are
derived from the generation term G in (2.1a), but there is a flux term, ∂z〈ψv〉, due to
the vertical differentiation by parts used in the derivation. This flux term is absorbed
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into the last term in (2.4a) by using (2.7a) of part 1. The last term of C2 in (2.3a)
is derived from the advection term in (2.1a) and there is also a flux term which is
absorbed into the last term in (2.4a). Since the last term of C2 is very small (as
shown later in figures 14 and 16), the three energy conversion terms in (2.3a–c) can
be simply related to the three generation terms in (2.1a–c), respectively. The second
term 〈vb〉 sin α on the right-hand side of (2.2c) is the potential energy conversion due
to the along-band buoyancy advection and can be related to the v-advection term in
(2.1c). Because the energy fluxes defined in (2.4) all vanish at the boundaries in either
the free-slip or non-slip case, the three energy flux gradient terms in (2.4a–c) make no
net contribution to perturbation energy production and thus will not be considered
in the energetic analyses in subsequent sections.

Further integrating (2.2) in the vertical gives

∂t{K2} = {〈uv〉} + {〈wb〉}Ri − {〈uw〉} sinα + {D2}, (2.6a)

∂t{Kv} = −{〈uv〉} − {〈vw〉} cosα + {Dv}, (2.6b)

∂t{Pb} = −{〈wb〉}Ri − {〈ub〉} cosα + {〈vb〉} sin α + {Db}, (2.6c)

where {(•)} denotes the vertical average of (•). The total energy equation is given by
the sum of the three equations in (2.6); that is,

∂t{E} = {C} + {D2 + Dv + Db}, (2.7)

where {E} = {K2+Kv +Pb} is the volume-averaged total energy, and {C} = {C2+Cv +
Cb+〈vb〉 sin α} is the volume-averaged total energy conversion. Because 〈uv〉+〈wb〉Ri

in C2 are cancelled by −〈uv〉 in Cv and −〈wb〉Ri in Cb, the total energy conversion
contains only three components:

C = CU2 + CV v + CBb, (2.8)

where CU2 = −〈uw〉 sin α is the kinetic energy conversion between the basic flow and
perturbation circulation in the cross-band direction, CV v = −〈vw〉 cos α the kinetic
energy conversion between the basic flow and perturbation flow in the along-band
direction, and CBb = 〈vb〉 sin α − 〈ub〉 cos α is the potential energy conversion between
the basic-state buoyancy and perturbation buoyancy. The total energy equation (2.7)
is the essentially same as (17) of Miller & Antar (1986) but scaled differently (see
§ 6.1 of part 1).

2.3. Plan of the study and mode selection

As mentioned in the introduction, the growth rate patterns computed in part 1
exhibited two major new features that differ from the inviscid results of Stone (1966,
1970). To understand the first feature, that is, why the global maximum in the growth
rate pattern moves to the negative side of the symmetry axis when Ek increases from
0 to 0.01 and Ri is between 0.25 and the transitional Richardson number (Ri∗ = 0.95
in the inviscid limit), we need to examine the structures of the nearly symmetric
modes compared to the symmetric modes. As reflected by this feature, the presence
of diffusivity yields not only a scale selection but also an orientation selection for the
most unstable mode. The diffusive scale selection is intuitive and well understood.
As a finite horizontal wavelength is determined by the scale selection mechanism for
the most unstable mode, we can fix the wavelength l and change the orientation
angle α to study the orientation selection mechanism. As will be seen in § § 4 and 5,
the growth of the warm-side (or cold-side) tilted mode is maximally supported by the
symmetric-type energy conversion plus the baroclinic-type energy conversion in the
middle layer (or boundary layers). Since the baroclinic-type energy conversin enhances
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Figure 1. Growth rate σ plotted as a function of (l, α) for σ � 0 in the non-slip case, where l
(plotted in logarithm scale) is the wavelength and α is the tilt angle of the mode orientation
(measured negative clockwise from the basic-shear direction to the y-direction, that is, to
the warm side of the basic shear). The external parameter values are Ri=0.5, Ek= 0.0001,
Pr= 1.0 and r2 = 0.02. Note that the main growth rate pattern (σ � 0 and ω = 0) remains
largely the same as that for Ek= 0.001 in figure 3 of part 1, but the two side lobes (for the
propagating modes) are enlarged by about three times. The maximum growth rate is 0.913 at
(l, α) = (0.186, −0.005◦).

the middle-layer (or boundary) structures of the warm-side (or cold-side) tilted mode,
the mode structures are smoothed (or sharpened) near the boundaries. Hence, the
warm-side tilted modes are less severely damped by the increased diffusivity than the
cold-side tilted modes. This highlights the physical understanding obtained in this
paper for the orientation selection.

For the typical parameter setting (Ri = 0.5, Ek =0.01, Pr = 1.0 and r2 = 0.02) in
figures 1(a) and 2(a) of part 1, the global maxima in the growth rate patterns for
the free-slip and non-slip cases are both in the vicinity of (l, α) = (1, −12◦), so we
can select (l, α) = (1, −12◦) and compare the modes at this point with the symmetric
modes at (l, α) = (1, 0) and with the modes at (l, α) = (1, 12◦) on the positive side of
the symmetry axis. With l =1, the dimensional wavelength is given by L ≡ |V z|H/f ,
that is, the Rossby radius of deformation associated with the basic shear. Since the
structure differences between these modes and their implied differences in dynamics
are masked by the increased diffusivity (Ek = 0.01), it is illuminating to first examine
the nearly inviscid mode structures at the points selected above in the parameter space
of (l, α) with Ek= 0.0001 and then consider the effects of the increased diffusivity.
The nearly inviscid growth rate pattern is plotted in figure 1 for the non-slip case with
Ek = 0.0001 while the remaining external parameter values are as in figure 3 of part 1.
The nearly inviscid growth rate pattern for the free-slip case (not shown) is almost
identical to that in figure 1 expect for the side lobes (associated with propagating
modes). The main growth rate pattern in figure 1 is very close to the inviscid limit
(see § 6.2 of part 1).

The growth rate pattern in figure 1 is characterized by a V-shaped ridge with two
branches split from a main ridge along the two sides of the symmetry axis. As the



288 Q. Xu

Ekman number increases to 0.01 (see figure 2a of part 1), the main ridge collapses, the
global maximum point moves along the negative-α branch to the vicinity of the point
selected above at (l, α) = (1, −12◦), while the positive-α branch drops below zero for
the non-slip case but not for the free-slip case (see figures 1a and 2a of part 1). This
implies that the structures of the warm-side tilted modes at (l, α) = (1, −12◦) may
remain qualitatively the same when Ek increases from 0.0001 to 0.01 regardless of the
boundary conditions. This is another reason why we first examine the nearly inviscid
mode structures, as mentioned above. For each type of mode selected above, we will
examine the nearly inviscid mode structures and related instability mechanisms in a
first step, analyse their energetics in a second step, and then consider the effects of
the increased diffusivity in a third step. Since the nature of symmetric instability is
relatively simple (Xu & Clark 1985) and can be easily interpreted by parcel dynamics
(Emanuel 1983) and generalized energetics (Ooyama 1966; Xu 1986), the symmetric
modes will be examined first and then compared with the warm-side tilted modes
and cold-side tilted modes in the next three sections.

To understand the second major feature summarized in the introduction, that is,
why the global maximum in the growth rate pattern shifts away from the baroclinic
axis when Ek increases from 0 to 0.01 and Ri is larger than the inviscid transitional
Richardson number (Ri∗ = 0.95), we need to examine the structures of the nearly
baroclinic modes compared to the baroclinic modes. For the typical parameter setting
(Ri = 1.0, Ek =0.01, P r = 1.0 and r2 = 0.02) in figures 1(e) and 2(c) of part 1, the
global maximum growth rates are σ = 0.216 at (l, α) = (5.02, −74◦) for the free-slip
case and σ =0.106 at (l, α) = (3.12, −47◦) for the non-slip case. For the free-slip
case, the growth rate pattern is flat in the vicinity of the global maximum and the
global maximum is close to the baroclinic axis, so the structure difference between
the nearly baroclinic mode and baroclinic mode is small. For the non-slip case, the
global maximum is not close to the baroclinic axis, so there is a distinct structure
difference between the nearly baroclinic mode and baroclinic mode. The analyses will
be focused on the non-slip case. By using the aforementioned three-step approach,
the nearly baroclinic mode at (l, α) = (3.12, −47◦) will be examined first in § § 6.1–6.3,
and then compared with the baroclinic mode at the conditional maximum point
(l = 3.85, −90◦) in § 6.4 and with the cold-side tilted mode at (l, α) = (3.12, 47◦) in
§ 6.5.

3. Symmetric modes
3.1. Mode structures and instability mechanism

Figure 2 shows the structures of ψ , v, b and G for the non-slip symmetric mode
at (l, α) = (1, 0) with Ek =0.0001 and Ri = 0.5. To facilitate the later comparisons
between different modes, the amplitude of ψ is normalized to unity in figure 2(a),
where the dashed and solid straight lines are the M-surface and B-surface intersected
by the cross-band vertical plane, respectively. As shown by the arrow along the central
streamline between the two cells, the slantwise downdraught is steeper than the M-
surface but less steep than the B-surface in (x, z). Thus, according to the simple rules
stated in § 2.1 J (ψ, M) is positive and J (ψ, B) is negative along the downdraught.
Since Dt = ∂t and ∂yB = 0 for the symmetric modes, these two terms are the only
generation terms in (2.1b, c). Their generated v is positive and b is negative along the
downdraught as shown in figure 2(b, c). The Coriolis force associated with the positive
v is rightward and the buoyancy associated with the negative b is downward. Their
combined vector force accelerates the slanted downdraught. The slantwise updraught
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Figure 2. Contours (solid for non-negative and dashed for negative) of (a) ψ , (b) v, (c) b, and
(d) G = ∂zv − ∂xb in the cross-band vertical plane (x/l, z) for the non-slip symmetric mode
at (l, α) = (1, 0) in figure 1. The horizontal coordinate x is scaled by the wavelength l. The
amplitude of ψ is normalized to unity to facilitate comparisons. The amplitudes of v, b and
G are 6.6, 13.2 and 330.8, respectively. The growth rate is 0.479. The circulation direction is
shown by the arrow along the central streamline between the two cells in (a). The positive
v-core near the lower boundary is marked by ⊗ in (a) and (b). The positive b-core near
the lower boundary is marked by + in (a) and (c). The dashed and solid straight lines are
M-surface and B-surface intersected by the cross-band vertical plane, respectively.

is accelerated similarly by this type of positive feedback. The overall positive feedback
is indicated by the positive correlation between the vorticity and vorticity generation
or, equivalently, by the negative correlation between ψ and G in the interior domain
(figure 2a, d).

As shown in figure 2(a), the slanted downdraught splits into two branches as it
approaches the lower boundary. Along the leftward branch, the cross-band advections
of the basic-state M and B reach their maxima near the lower boundary between
the two stagnation points. These maxima (of J (ψ, M) and J (ψ, B)) are marked by ⊗



290 Q. Xu

and +, respectively, in figure 2(a). The positive v-core and b-core they produce are
marked by ⊗ in figure 2(b) and by + in figure 2(c), respectively. As the cross-band
flow produces the v-core, it is decelerated locally by the Coriolis force associated with
the v-core.

Underneath the positive v-core marked by ⊗ in figure 2(b), ∂zv is maximized and
so is the vorticity generation. This is shown by the very shallow and intense G-
cores along the boundaries in figure 2(d). These G-cores are caused by the non-slip
boundary conditions. When the non-slip boundary conditions are replaced by the
free-slip ones or the Ekman number becomes zero, the v-cores and b-cores are shifted
onto the boundaries and the shallow G-cores mostly diminish. The interior fields,
however, remain almost exactly the same as in figure 2.

3.2. Energy analysis

Vertical profiles of the energy terms defined in (2.2)–(2.5) are plotted in figure 3 for
the non-slip symmetric mode in figure 2. As shown by the solid profile in figure 3(a),
C2 is positive in the interior domain 0.8 >z > 0.2. This is a necessary condition for
the aforementioned positive feedback. The positive feedback requires the horizontal
and vertical motions (u and w) in the cross-band vertical plane be accelerated by the
Coriolis force associated with v and buoyancy b, respectively, which means that 〈uv〉
and 〈wb〉Ri should be positive and so should their sum C2.

In general, a positive feedback requires the sum of energy conversion terms to
be positive in each of the three equations in (2.1). For the symmetric mode, v

is generated solely by J (ψ, M) and thus is positively correlated with J (ψ, M). This
explains why Cv = 〈vJ (ψ, M)〉 is positive over the entire depth (except for the two non-
slip boundaries where v vanishes), as shown in figure 3(b). Similarly, Cb = 〈bJ (ψ, B)〉
is positive over the entire depth (except for the two non-slip boundaries where b

vanishes), as shown in figure 3(b). However, as shown in figure 3(a), C2 is positive
only in the interior domain (0.8 > z > 0.2), so the positive feedback is confined
within the interior domain. As explained above, this positive feedback requires 〈uv〉
and 〈wb〉Ri to be positive in the energy conversions. This type of energy conversion
is called symmetric.

The energy conversions Cv and Cb reach their maxima near the two boundaries
(figure 3b, c). These maxima are associated with the v-cores in figure 2(b) and b-
cores in figure 2(c), respectively. As explained in § 3.1, these cores are generated in
association with the local deceleration of the cross-band flow near the boundaries.
This gives a negative feedback to the cross-band circulation near the boundaries
where C2 becomes negative as shown in figure 3(a).

The energy dissipation terms D2, Dv and Db are virtually zero in the interior
domain but jump to negative values at the boundaries (figure 3a–c). When D2 is
combined with C2 on the right-hand side of (2.2a), the negative D2 spikes offset the
C2 jumps at the two boundaries. However, when Dv is combined with Cv on the
right-hand side of (2.2b), the negative Dv spikes enhance the decrease of Cv + Dv

at the boundaries. A similar situation is seen when Db is combined with Cb on the
right-hand side of (2.2c). The enhanced boundary decreases in Cv+ Dv and Cb + Db

demonstrate the negative impact of the non-slip boundary conditions on the energy
production. When the non-slip boundary conditions are replaced by the free-slip ones
or the Ekman number becomes zero, all the boundary spikes diminish in the energy
dissipation profiles and all the near-boundary decreases in the energy conversion
profiles disappear, but the interior profiles remain almost intact (not shown).



Baroclinic instabilities in the presence of diffusivity. Part 2 291

Figure 3. Vertical profiles of (a) C2 (solid) and D2 (dotted), (b) Cv (solid) and Dv (dotted),
and (c) Cb (solid), 〈vb〉 sin α/Ri (dashed) and Db (dotted) for the non-slip symmetric mode in
figure 2. Note that 〈vb〉 sin α/Ri = 0 for the symmetric modes (α = 0). Here, C2, Cv and Cb are
the energy conversions defined in (2.3), while D2, Dv and Db are the dissipation terms defined
in (2.5). All the terms are normalized by the volume-averaged total energy {E} defined in (2.7).

3.3. Effects of increased diffusivity

When the Ekman number is increased to 0.01, the boundary spikes in the energy
dissipation profiles and the sharp edges in the energy conversion profiles in figure 3
are all diffused into deep boundary layers (not shown). In this case, the boundary-
layer depth is increased by an order of magnitude, and the energy dissipation terms
drop to relatively large negative values near and at the boundaries. The interior
profiles remain roughly the same as those in figure 3 but Cb is decreased significantly.
The slanted downdraught is still between the M-surface and B-surface in the interior
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domain and thus is accelerated by the same type of positive feedback as explained in
§ 3.1, except that the positive feedback is weakened due to the increased diffusivity.

Unlike the above non-slip mode, the free-slip symmetric mode at (l, α) = (1, 0)
becomes a decaying mode as Ek increases to 0.01. In this case, the diffused v-cores
and b-cores are shifted along the two free-slip boundaries and become negatively
correlated with their respective generation terms J (ψ, M) and J (ψ, B). Because of
these structure changes (not shown), the positive feedback is dramatically weakened
and confined in a shallow layer (between 0.65 > z > 0.35) as indicated by the energy
conversion profiles (not shown). The total energy generation is thus insufficient to
overcome the total energy dissipation (although the energy dissipation is zero at the
free-slip boundaries), so the growth rate becomes negative.

4. Warm-side tilted nearly symmetric modes
4.1. Mode structures and instability mechanism

Figure 4 shows the structures of ψ , v, b and G for the non-slip mode at
(l, α) = (1, −12◦) with Ek = 0.0001 and Ri =0.5. Since the band is tilted to the warm
side of the basic shear (α < 0), the cross-band component of the basic flow, given
by (z − 0.5) sin α, is no longer zero. The near-boundary basic-flow directions are
sketched by the two hollow arrows in figure 4(a). As the cross-band circulation is
stretched by the basic shear, it becomes more slanted than those in figure 2(a). The
M-surface and B-surface (intersections in the cross-band vertical plane) in figure 4(a)
are slightly closer to each other than in figure 2, but the slanted downdraught is
still between the two surfaces and thus is accelerated by mainly the same positive
feedback as explained for the symmetric mode in § 3.1. This positive feedback is
further enhanced by the v-advection of the basic-state buoyancy in the middle levels,
because the v-advection term −v∂yB = v sin α/Ri is proportional to −v (for α < 0)
and v is negatively correlated with b in the middle levels (see figure 4b, c). The slanted
updraught is also accelerated by this type of positive feedback and so is the slanted
cross-band circulation. The positive feedback is manifested by the negative correlation
between ψ and G in the interior domain (figure 4a, d).

The slanted downdraught in figure 4(a) is closer to the M-surface than in figure 2(a).
This implies that v is reduced slightly and b is enhanced negatively along the
downdraught in the middle levels (compare figures 4b, c and 2b, c). As explained above,
b is also enhanced negatively by −v∂yB in the middle levels along the downdraught.
Since ∂zv is small and −Ri∂xb is the dominant part of G in the middle levels, G is
enhanced negatively (or positively) on the right (or left side) of the downdraught, as
shown by comparing figures 4(d) and 2(d). This means that the enhanced G-field is
positively correlated with the vorticity field, so the vorticity generation is increased in
the middle levels and the streamlines are tightened toward the circulation centres away
from the two boundaries (compare figures 4a and 2a). In this case, the near-boundary
cross-band flow becomes relatively weak, so the maxima of J (ψ, M) and J (ψ, B)
are reduced and shifted further away from the boundaries. Note that the v-cores are
not only generated by J (ψ, M) but also stretched and advected by the basic shear,
so the positive v-core (marked by ⊗) in figure 4(b) is not only weaker and located
further away from the lower boundary but also more slanted and located further
rightward than in figure 2(b). As the positive buoyancy perturbation generated by
J (ψ, B) is largely offset by −v∂yB in the positive v-core area, the b-core (marked by
+ in figure 4c) is shifted to the upper-left side of the v-core.
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Figure 4. As in figure 2 but for (l, α) = (1, −12◦). The amplitudes of v, b and G are 5.0,
9.8 and 134.4, respectively. The growth rate is 0.488. The basic-flow shear (projected in the
cross-band vertical plane) is sketched by the two horizontal hollow arrows near the lower and
upper boundaries.

Because the v-cores in figure 4(b) are weaker and located further away from the
boundaries than those in figure 2(b), the shallow G-cores along the boundaries in
figure 4(d) are much weaker than those in figure 2(d). When the non-slip boundary
conditions are replaced by the free-slip ones or the Ekman number becomes zero, the
v-cores and b-cores are shifted onto the boundaries and the shallow G-cores disappear
completely (not shown), but the interior fields remain the same as in figure 4.

4.2. Energy analysis

For the warm-side tilted mode, C2 is increased in the interior domain (compare
figures 5a and 3a). The increased C2 is consistent with enhanced vorticity generation,
as explained in § 4.1. Also, as the cross-band perturbation flow becomes relatively deep
and weak near the boundaries, u, w, v and b are all weakened near the boundaries.
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Figure 5. As in figure 3 but for (l, α) = (1, −12◦).

This explains why the absolute values of C2, Cv and Cb are all reduced near the
boundaries (compare figures 5a–c and 3a–c).

The dashed profile in figure 5(c) shows that the potential energy conversion due
to the along-band buoyancy advection (represented by 〈vb〉 sinα with sinα < 0) is
positive in the middle levels but is negative in the lower and upper levels. This result
is consistent with the correlation between v and b, which is negative in the middle
levels but positive in the lower and upper levels (figure 4b, c). The vertical average
of this conversion term is negative but very small. Its contribution to the potential
energy production can be neglected in comparison with the first term Cb in (2.2c) as
shown in figure 5(c). Note that the total potential energy conversion Cb + 〈vb〉 sin α is
increased (compare figures 5c and 3c) and the energy conversion C2 is also increased
in the interior domain (figures 5a and 3a), so the positive feedback is enhanced. This
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explains why the warm-side tilted mode grows faster than the symmetric mode (with
l = 1.0 and Ek = 0.0001).

It is observed (not shown) that 〈wb〉Ri is positive over almost the entire depth
and maximized at the middle level, so the perturbation buoyancy flux is upward.
As shown in figure 5(c), in a relatively shallow middle layer, 〈vb〉 sinα is positive
and thus 〈vb〉 is negative, so the perturbation buoyancy flux is toward the negative
y-direction to the cold side (since the y-direction is tilted to the warm side of the
basic shear). Hence, the perturbation transports warm air to the cold side with rising
motion and transports cold air to the warm side with sinking motion, in the middle
levels in the along-band vertical plane (y, z). This feature is typical of the baroclinic
mode, although here it is exists only in a shallow middle layer. The associated energy
conversion requires that both 〈wb〉Ri and 〈vb〉 sin α be positive, which characterizes
the baroclinic-type energy conversion (see § 6.4). While the growth of the warm-side
tilted nearly symmetric mode is supported mainly by the symmetric-type energy
conversion through the positive feedback explained above, it is also assisted by the
baroclinic-type energy conversion in the middle levels.

The energy dissipation profiles (dotted) in figure 5(a–c) show negative spikes at
the boundaries, but these spikes are much smaller than those in figure 3(a–c). The
smallness of boundary energy dissipation in figure 5 is a direct consequence of the
smoothness of the near-boundary structures in figure 4(a–c). The near-boundary
smoothness is produced dynamically in association with the baroclinic-type energy
conversion, which is negative near the boundaries, so it is an inviscid feature of the
warm-side tilted modes. Hence, the warm-side tilted modes are less severely damped
by the increased diffusivity than the cold-side tilted modes, especially for the non-slip
case (see § § 4.3 and 5.3). This explains why the global maximum point in the growth
rate pattern moves along the negative-α branch as the Ekman number increases
(compare figure 1 with figures 3 and 2a of part 1).

When the non-slip boundary conditions are replaced by the free-slip ones or the
Ekman number becomes zero, the small boundary spikes diminish in the energy
dissipation profiles and the energy conversion profiles are moved slightly away from
zero at the boundaries, but the interior profiles remain almost intact (not shown).
As the energy dissipation reduces to zero at the free-slip boundaries, the growth rate
increases slightly from σ = 0.488 (for the non-slip mode) to 0.496 (for the free-slip
mode).

4.3. Effects of increased diffusivity

When the Ekman number increases from 0.0001 to 0.01, the growth rate for the non-
slip mode at (l, α) = (1, −12◦) decreases from 0.488 to 0.244. In this case, as shown
in figure 6(a), C2 is enhanced in the middle level from the already increased value in
figure 5(a) (from that in figure 3a). The energy dissipation D2 (dotted in figure 6a) is
increased negatively, but the sum of C2 and D2 is still positive in the interior domain.
This implies that the interior dynamics and related instability mechanism remain
qualitatively the same, as explained for the nearly inviscid mode in figure 4. As shown
in figure 7(a), the slanted downdraught is still between the M-surface and B-surface
and thus is accelerated by the same positive feedback mechanism as described for the
nearly inviscid mode in § 4.1.

Due to the increased diffusivity, the downdraught is steeper than that in figure 4(a).
As the downdraught is tilted vertically away from the M-surface, J (ψ, M) is enhanced
along the downdraught. Because of this and the enhanced diffusivity, the positive v-
core is shifted to the middle levels and becomes elongated close to the downdraught
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Figure 6. As in figure 3 but for (l, α) = (1, −12◦) with Ek= 0.01.

(figure 7b). As the downdraught is tilted vertically toward the B-surface, J (ψ, B)
is reduced along the downdraught. The positive b generated by J (ψ, B) is further
reduced by −v∂yB in the positive v-core area. Thus, although the b-cores are shifted
away from the boundaries due to the enhanced diffusivity, they are not connected in
the middle levels (figure 7c). The G-cores are expanded into relatively deep boundary
layers and their amplitude is decreased (from 134.4 in figure 4d) to 55.0 in figure 7(d).
In response to these structure changes, Cv is enhanced (figure 6b) while Cb is reduced
(figure 6c) but 〈vb〉 sin α is enhanced over a relatively deep middle layer (compare
figure 6c and 5c) and so is its contribution to the baroclinic-type energy conversion.
This enhances the positive feedback against the increased diffusivity.

As Ek increases to 0.01, the free-slip mode at (l, α) = (1, −12◦) is still unstable. Its
cross-band circulation is similar to the non-slip mode in figure 7(a) except that the
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Figure 7. As in figure 2 but for (l, α) = (1, −12◦) with Ek= 0.01. The amplitudes of v, b and
G are 7.0, 6.0 and 55.0, respectively. The growth rate is 0.244.

flow is enhanced along the boundaries (not shown). Because of this, the v-cores are
extended to the boundaries, the associated v-advection of the basic-state buoyancy
further enhances the b-cores along the free-slip boundaries, and the G-cores are also
extended to the boundaries (not shown). According to (2.3) and (2.5), the energy
conversion terms are no longer zero along the free-slip boundaries but the energy
dissipation terms all become to zero along the free-slip boundaries. The interior
profiles of these energy terms (not shown) are roughly the same as those for the
non-slip case in figure 6. Because the energy dissipation is reduced to zero at the free-
slip boundaries, the free-slip growth rate (0.297) is slightly larger than the non-slip
one (0.244). Clearly, the growth rates of the warm-side tilted modes are not sensitive
to the boundary conditions even when the Ekman number increases to 0.01. This
insensitivity can be explained by the aforementioned inviscid feature – the dynamically
produced near-boundary smoothness.
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Figure 8. As in figure 2 but for (l, α) = (1, 12◦). The amplitudes of v, b and G are 10.1, 25.0
and 156.9, respectively. The growth rate is 0.487.

5. Cold-side tilted nearly symmetric modes
5.1. Mode structures and instability mechanism

Figure 8 shows the structures of ψ , v, b and G for the non-slip mode at (l, α) = (1, 12◦)
with Ek =0.0001 and Ri = 0.5. As indicated by the two hollow arrows near the two
boundaries in figure 8(a), the basic flow projected in the cross-band vertical plane
is in the opposite direction to that in figure 4(a) and thus the slanted circulation is
steeper than in figure 2(a). The slanted downdraught is still between the M-surface
and B-surface and thus is accelerated mainly by the same type of positive feedback as
described for the symmetric mode in § 3.1. The overall positive feedback is indicated
by the negative correlation between G and ψ in the interior domain (figure 8a, d).

As shown in figure 8(b, c) (compare figure 2b, c), the v-cores and b-cores are
intensified and shifted toward the boundaries, and the v-cores are also shifted
horizontally following the basic-flow shear. These changes are opposite to those
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Figure 9. As in figure 3 but for (l, α) = (1, 12◦).

for the warm-side tilted mode in figure 4(b, c). The associated changes in the G-field
(compare figure 8d and 2d) are also opposite to those for the warm-side tilted mode
(compare figure 4d and 2d). These changes are related to the increased slope of the
slanted circulation (figure 8a) and their relationship can be analysed in the same way,
but for opposite case, as for the warm-side tilted mode in § 4.1. When the non-slip
boundary conditions are replaced by the free-slip ones or the Ekman number becomes
zero, the v-cores and b-cores are shifted onto the boundaries, the very shallow near-
boundary G-cores diminish, but the interior fields remain almost exactly the same as
in figure 8.

5.2. Energy analysis

Associated with the mode structures in figure 8, the C2 profile drops sharply to
large negative values (figure 9a) and the profiles of Cv , Cb and 〈vb〉 sin α increase



300 Q. Xu

rapidly to large positive values near the boundaries (figure 9b, c). These features
are opposite to those for the warm-side tilted mode in figure 5 and thus can be
explained similarly but in the opposite way. Note that Cb + 〈vb〉 sin α is increased
dramatically near the boundaries (compare figures 9c and 3c) and the positive-C2

layer is expanded toward the boundaries (compare figures 9a and 3a), so the positive
feedback occurs in a relatively deep interior layer. As both 〈wb〉Ri (not shown)
and 〈vb〉 sin α are increased sharply near the boundaries, the baroclinic-type energy
conversion is enhanced dramatically near the boundaries. Assisted by this enhanced
baroclinic-type energy conversion, the cold-side tilted mode grows faster than the
symmetric mode (with l = 1.0 and Ek = 0.0001).

At the two boundaries, the negative spikes in the energy dissipation profiles (dotted)
in figure 9(a–c) are much larger than those in figure 3(a–c), and the situation
is opposite to that in figure 5. These negative spikes are caused by the non-slip
boundary conditions. When the boundary conditions are replaced by the free-slip
ones or the Ekman number becomes zero, all the negative spikes diminish in the
energy dissipation profiles and all the near-boundary spikes in the energy conversion
profiles are extended onto the boundaries, but the interior profiles remain almost intact
(not shown). As the energy dissipation is reduced to zero at the free-slip boundaries,
the baroclinic-type energy conversion is enhanced near and at the boundaries. Hence,
the free-slip growth rate (0.496) is slightly larger than the non-slip one (0.487).

5.3. Effects of increased diffusivity

When the Ekman number increases to 0.01, the non-slip mode at (l, α) = (1, 12◦)
becomes a decaying mode. The free-slip mode at (l, α) = (1, 12◦) is still unstable but
the growth rate decreases to 0.166. Note that the near-boundary sharpness seen in
§ § 5.1 and 5.2 for the cold-side tilted modes is an inviscid feature. This feature is
produced similarly but in an opposite way to the near-boundary smoothness for the
warm-side tilted modes. It is this feature that causes the non-slip and free-slip modes
at (l, α) = (1, 12◦) to respond very differently to the increase of diffusivity. Because of
this feature, the non-slip mode is much more severely damped by the near-boundary
energy dissipation with the increased diffusivity (Ek = 0.01) than the free-slip mode.
This explains why the positive-α branch of the growth rate pattern drops below zero
for the non-slip case but not for the free-slip case as the Ekman number increases to
0.01 (see figures 1a and 2a of part 1).

6. Nearly baroclinic modes versus baroclinic modes
6.1. Mode structures and instability mechanism for the warm-side tilted nearly

baroclinic mode

Figure 10 shows the structure of ψ , v, b and G for the non-slip nearly baroclinic
mode at (l, α) = (3.12, −47◦) with Ek =0.0001 and Ri = 1.0. This mode is tilted to the
negative side (by −47◦) of the symmetric axis in the parameter space or, equivalently,
to the warm side of the basic shear in physical space (with α defined within ±90◦

as in (2.1) of part 1). We will call it a warm-side tilted nearly baroclinic mode. The
basic shear projected in the cross-band vertical plane is shown by the hollow arrows
in figure 10(a), similar to that in figure 4(a), but the M-surface becomes steeper than
the B-surface in the cross-band vertical plane. The slanted downdraught (along the
central streamline marked by the arrow) is slightly steeper than the M-surface and
much steeper than the B-surface in the cross-band vertical plane. Thus, according to
the simple rules stated in § 2.1, J (ψ, M) is slightly positive and so is its generated v
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Figure 10. As in figure 2 but for (l, α) = (3.12, −47◦) with Ri=1.0. The amplitudes of v, b
and G are 7.3, 7.7 and 327.4, respectively. The growth rate is 0.172. The negative b-core near
the lower boundary is marked by the minus signs in (a) and (c).

along the downdraught (figure 10b). Along the downdraught, J (ψ, B) is positive but
the combined generation, J (ψ, B)−v∂yB , is negative in the middle levels and so is its
generated b (figure 10c). Thus, the slanted downdraught is accelerated by the vector
force composed of the rightward Coriolis force associated with the positive v and
by the downward buoyancy associated with the negative b. This positive feedback
depends on the v-advection in (2.1c), which is different from that for the symmetric
and nearly symmetric modes.

Because the slanted downdraught is only slightly steeper than the M-surface,
J (ψ, M) does not reach the maximum until the downdraught splits and the flow
turns into the leftward branch near the lower boundary. As soon as the positive
v-core is generated by J (ψ, M), it is advected by the basic flow away from the
maximum of J (ψ, M) to the downdraught exit area (marked by ⊗ in figure 10a, b).
The v-advection term −v∂yB is negative in the positive v-core area. Its generated
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Figure 11. As in figure 3 but for (l, α) = (3.12, −47◦) with Ri= 1.0.

negative b-core is advected rightward by the basic flow and enhanced by J (ψ, B)
along the rightward branch of the cross-band flow. Thus, the negative b-core is near
the lower boundary between the two stagnation points (marked by the minus signs
in figure 10a, c). The shallow G-cores (figure 10d) are associated with the very strong
vertical gradient of v near the non-slip boundaries. When the non-slip boundary
conditions are replaced by the free-slip ones or the Ekman number becomes zero,
the v-core and b-core centres are shifted to the boundaries and the shallow G-cores
largely diminish but the interior fields remain almost the same.

6.2. Energy analysis for the warm-side tilted nearly baroclinic mode

As shown in figure 11(a), C2 is positive in the interior domain, and this is consistent
with the negative correlation between ψ and G in the interior domain (figure 10a, d).
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The Cv profile (figure 11b) and Cb profile (figure 11c) reach their maxima near
the two boundaries. Note that Cv = 〈J (ψ, M)v〉 and Cb = 〈J (ψ, B)b〉; these maxima
are associated with the v-cores and b-cores and their positive correlations with
J (ψ, M) and J (ψ, B), respectively. These cores are generated in association with the
local deceleration of the cross-band flow near the boundaries. The local deceleration
implies a negative feedback to the cross-band circulation near the boundaries, as
reflected by the negative peaks of C2 near the boundaries in figure 11(a).

As shown in figure 11(b), Cv is small but still positive at the middle level. This
is consistent with the reduced J (ψ, M) in the middle levels where the downdraught
is slightly steeper than the M-surface (figure 10a). As shown in figure 11(c), Cb is
negative at the middle level but Cb + 〈vb〉 sin α is positive. Thus, as mentioned earlier,
the b-field is mainly generated by −v∂yB in the middle levels. Since 〈wb〉Ri is positive
over the entire depth (not shown) and 〈vb〉 sin α is positive in the middle levels
(figure 11c), the growth of the warm-side tilted nearly baroclinic mode is supported
by the baroclinic-type energy conversion in the middle levels.

The boundary spikes in the energy dissipation profiles (dotted in figure 11) are
similar to those in figure 3. The negative D2 spikes offset the C2 jumps at the two
boundaries, so C2 +D2 on the right-hand side of (2.2a) is the same as C2 except
that the boundary jumps are eliminated. The negative Dv spikes, however, enhance
the drops of Cv + Dv at the boundaries. The negative Db spikes also enhance the
decrease of Cb + 〈vb〉 sin α + Db at the boundaries. The enhanced boundary drops
on the right-hand sides of (2.2b) and (2.2c) demonstrate the negative impact of the
non-slip boundary conditions on the energy production. When the non-slip boundary
conditions are replaced by the free-slip ones or the Ekman number becomes zero,
all the boundary spikes diminish in the energy dissipation profiles and all the near-
boundary decreases in the energy conversion profiles disappear, but the interior
profiles remain almost intact (not shown).

6.3. Effects of increased diffusivity on the warm-side tilted nearly baroclinic modes

When the Ekman number increases from 0.0001 to 0.01, the boundary spikes in
figure 11 are diffused into deep boundary layers as shown in figure 12. The total
potential energy conversion Cb + 〈vb〉 sin α is still positive over the entire depth
(figure 12c), but the depth of the positive-C2 layer is reduced (compare figures 12a

and 11a) and Cv is nearly zero at the middle level (figure 12b). Hence, the positive
feedback is weakened by the increased diffusivity. In response to the increased
diffusivity, the positive v-cores are expanded to the middle levels in the vicinity of
the downdraught, the negative b-cores are connected into a single core at the middle
level, and the G-cores are expanded into relatively deep boundary layers but G-field
is still negatively correlated with the ψ-field. These mode structure changes (not
shown) are consistent with the energy analysis in figure 12, and their implied positive
feedback remains qualitatively the same, as discussed in § 6.1 for the nearly inviscid
mode.

6.4. Comparisons with purely baroclinic modes

The nearly baroclinic mode discussed in figure 12 is at the global maximum point
(l, α) = (3.12, −47◦) in the growth rate pattern (figure 2c of part 1). When the
parameter point moves from this global maximum point to the conditional maximum
point (3.12, −90◦), the growth rate decreases from 0.106 to 0.084. In this case, the
energy conversion terms C2, Cv and Cb + 〈vb〉 sinα are reduced slightly in the middle
levels. These structure changes (not shown) indicate that the positive feedback is
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Figure 12. As in figure 3 but for (l, α) = (3.12, −47◦) with Ri= 1.0 and Ek= 0.01.

weakened slightly, so the baroclinic mode grows slower than the nearly baroclinic
mode.

For the baroclinic mode, the y-direction is perpendicular to the basic shear and
points southward to the warm side (with α = −90◦), so the basic-state buoyancy
gradient is along the y-direction and is given by − sin α/Ri = 1/Ri. In this case,
〈wb〉 = −Cb/Ri is positive and 〈vb〉 = −〈vb〉 sin α is negative (not shown), so the
perturbation buoyancy flux is upward and northward in the along-band vertical
plane. This means that the perturbation transports warm air northward with rising
motion and transports cold air southward with sinking motion. This feature is essential
for the growth of the classic baroclinic waves (§ 9.3 of Holton 1979). It implies that
the perturbation parcel trajectories must be less steep than the basic-state potential
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temperature surfaces in (y, z) for an unstable baroclinic mode. The associated energy
conversion is characterized by the positiveness of both 〈wb〉Ri and 〈vb〉 sin α. This
type of energy conversion is called the baroclinic type, as mentioned in § 4.2.

6.5. Comparisons with cold-side tilted nearly baroclinic modes

When the parameter point moves from (l, α) = (3.12, −47◦) to (3.12, 47◦) in the growth
rate pattern (figure 2c of part 1), the growth rate decreases from 0.106 to 0.013. In
this case, the amplitudes of C2, Cv and Cb + 〈vb〉 sin α are reduced by nearly 50%
from those in figure 12(a–c), while the energy dissipation term Db increases negatively
to nearly −1.0 at the boundaries. These structure changes (not shown) indicate that
the positive feedback becomes much weaker, hence the growth rate (0.013) is much
smaller than that (0.106) of the warm-side tilted mode at (l, α) = (3.12, −47◦).

When Ek decreases to 0.0001, the growth rate of the cold-side tilted baroclinic
mode increases to the same value (0.172) as that of the warm-side tilted nearly
baroclinic mode in figure 10. As shown in figure 13, the energy conversion profiles of
C2, Cv and Cb + 〈vb〉 sinα are similar to those in figure 11, although the partitioned
profiles of Cb and 〈vb〉 sin α are very different from those in figure 11(c). This overall
similarity explains why the two tilted modes have almost the same growth rate. The
negative spikes at the boundaries in the energy dissipation profiles in figure 13 are
much larger than those in figure 11. The enhanced negative spikes are associated with
the enhanced v-cores and b-cores near the boundaries (not shown). These structure
differences explain why the growth rate (0.013) of the cold-side tilted nearly baroclinic
mode becomes much smaller than that (0.106) of the warm-side tilted mode as the
Ekman number increases to 0.01.

7. Volume-averaged energy
7.1. Energy for the symmetric and nearly symmetric modes

As explained in § 3.2, the symmetric-type energy conversion requires that both {〈uv〉}
and {〈wb〉}Ri be positive. Under this condition, the first energy conversion terms in
(2.6b) and (2.6c) are negative. Since sin α = 0 for the symmetric modes, the third energy
conversion terms vanish in (2.6b) and (2.6c). Hence, the second energy conversion
terms in (2.6b) and (2.6c) should be not only positive but also sufficiently large to
ensure that the sums of the conversion terms be positive to support the growth of
the symmetric mode. The signs of the energy conversion terms in (2.6) are thus all
determined, as verified by the computed energy conversions for the non-slip symmetric
modes in the vicinity of the conditional maximum. An example is shown by the values
at α = 0 in figure 14(a) for the non-slip mode at (l, α) = (1.0, 0). The parameter point
for this mode is close to the conditional maximum point at l = 0.93 on the symmetric
axis (see the growth rate pattern in figure 2a of part 1). When the parameter point
moves along the symmetric axis in the vicinity of the conditional maximum, the
energy terms in (2.6) do not change their signs (not shown). The energy conversions
for the symmetric modes in the vicinity of the conditional maximum are shown by
the solid boxes of the diagram in figure 15. As the parameter point moves away from
the symmetric point at α = 0 into the range −36◦ � α < 0◦ of the main growth rate
pattern for the non-slip modes (figure 2a of part 1), all the energy terms in (2.6) do
not change their signs although −{〈uw〉} sin α and {〈vb〉} sinα are no longer zero
(figure 14a). The energy conversions for the nearly symmetric modes in the vicinity
of the global maximum are summarized in figure 15.



306 Q. Xu

Figure 13. As in figure 3 but for (l, α) = (3.12, 47◦) with Ri= 1.0.

The free-slip nearly symmetric modes cover two ranges: −23◦ � α < −1◦ and
7◦ � α < 28◦ along l = 1.0 in the growth rate pattern (figure 1a of part 1). As shown
in figure 14(b), for the warm-side tilted free-slip modes (−23◦ � α < −1◦), all the
energy conversion terms except for {〈vb〉} sinα have the same signs as those in figure
14(a). Although {〈vb〉} sin α becomes negative, the total potential energy conversion
{CBb} = {〈vb〉} sinα − {〈ub〉} cosα is positive, so the energy conversion diagram is the
same as in figure 15. For the cold-side tilted nearly symmetric modes (7◦ � α < 28◦

in figure 14b), most of the energy conversion terms have the same signs as those
in figure 14(a) except that {CU2} = −{〈uw〉} sinα and {〈uv〉} change signs. Thus, the
directions of the latter two conversions are opposite to those in figure 15.

As shown by the energy dissipation curves in figure 14(a, b), the total energy
dissipation is stronger for the warm-side tilted non-slip modes (−36◦ � α < 0◦) than
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Figure 14. Volume-averaged energy terms in (2.6) plotted as functions of α (a) for the non-slip
nearly symmetric modes in the range (−36◦ � α < 0◦) of the main growth rate pattern (σ � 0
and ω = 0) along l = 1.0 in figure 2(a) of part 1, and (b) for the free-slip nearly symmetric
modes in the ranges (−23◦ � α < − 1◦ and 7◦ � α < 28◦) of the main growth rate pattern along
l =1.0 in figure 1(a) of part 1. The external parameter values are Ri=0.5, Ek= 0.01, Pr= 1.0
and r2 = 0.02.

that for the warm-side tilted free-slip modes (7◦ � α < 28◦), while the latter is about the
same as that for the cold-side tilted free-slip modes (−23◦ � α < −1◦). The cold-side
tilted non-slip modes are all decaying modes due to the dramatically increased total
energy dissipation (not shown). These results are consistent with the mode structure
analyses in § § 3–5.
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Figure 15. Energy conversion diagram for the nearly symmetric modes in the vicinity of
the global maximum. Here, {PB} is the volume-averaged potential energy associated with the
basic-state buoyancy, {KU } and {KV } are the volume-averaged kinetic energy components
associated with the cross-band basic flow and along-band basic flow, respectively. The
remaining symbols are as in (2.6)–(2.8). Note that {CU2} = {KU } = 0 for α = 0, so the dashed
part vanishes for the symmetric modes.

7.2. Energy for the baroclinic and nearly baroclinic modes

As explained in § 6.4, the baroclinic-type energy conversion requires both {〈wb〉}Ri

and {〈vb〉} sinα be positive. Under this condition, the first energy conversion term
is negative in (2.6c). Since cosα = 0 for the baroclinic modes, the second energy
conversion terms vanish in (2.6a) and (2.6c). Thus, −{〈uv〉} is the only energy
conversion term in (2.6b), so it should be positive to support the growth of the
baroclinic mode. The third energy conversion term in (2.6c) reduces to {〈vb〉}sgnα

(for α = ±90◦) and it should be sufficiently large to ensure that the sum of the
conversion terms be positive to support the growth of the baroclinic mode. The signs
of the energy conversion terms in (2.6) are thus all determined except for the third
energy conversion term in (2.6a). The determined signs are verified by the computed
energy conversions for the non-slip baroclinic mode at the conditional maximum
point of (l, α) = (3.12, −90◦) (see the values at α = − 90◦ in figure 16a). The energy
conversions for the baroclinic modes in the vicinity of the conditional maximum are
shown by the solid boxes of the diagram in figure 17.

The growth rate pattern for the non-slip case in figure 2(c) of part 1 covers the
range −137◦ � α < −7◦ or, equivalently, 43◦ � α < 187◦. As shown in figure 16(a),
along the ridge (conditional maximum for fixed α) of this growth rate pattern, the
energy conversions have the same signs as those for the baroclinic mode at α = −90◦,
although {CU2} = −{〈uw〉} sin α changes sign around zero from slightly negative to
slightly positive, −{〈vw〉} cosα and −{〈ub〉} cosα are no longer zero. The energy
conversions for the non-slip nearly baroclinic modes in the vicinity of the global
maximum are summarized in figure 17.

The growth rate pattern for the free-slip case in figure 1(e) of part 1 covers the
range −173◦ � α < −1◦ or, equivalently, 7◦ � α < 181◦. As shown in figure 16(b), along
the ridge of this growth rate pattern, {〈vb〉} sin α − {〈ub〉} cosα is positive as in
figure 16(a) and all the remaining terms have the same signs as those in figure 16(a).
The energy conversion diagram is shown in figure 17. As shown by the energy
dissipation curves in figure 16(a, b), the total energy dissipation is stronger for the
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Figure 16. Volume-averaged energy terms in (2.6) plotted as functions of α (a) for the non-slip
nearly baroclinic modes along the ridge (conditional maximum with α fixed) of the growth
rate pattern in figure 2(c) of part 1, and (b) for the free-slip nearly baroclinic modes along the
ridge of the growth rate pattern in figure 1(e) of part 1. The range of conditional maximum
(σ � 0) is −137◦ � α < − 7◦ or, equivalently, 43◦ � α < 187◦ in (a), and is −173◦ � α < −1◦

or, equivalently, 7◦ � α < 181◦ in (b). The external parameter values are Ri= 1.0, Ek= 0.01,
Pr= 1.0 and r2 = 0.02. Symbols as in figure 14.

non-slip case than for the free-slip case. This explains why the growth rate curve is
higher and more symmetric with respect to the baroclinic point at α = −90◦ for the
free-slip case in figure 16(b) than for the non-slip case in figure 16(a).



310 Q. Xu

Figure 17. As in figure 15 but for the nearly baroclinic modes in the vicinity of the global
maximum. Note that {CV v} = {KV } = 0 for α = ±90◦, so the dashed part vanishes for the
baroclinic modes. The solid (dashed) arrow between {KU } and {K2} indicates that the energy
conversion {CU2} is nearly zero and slightly negative (positive) for the baroclinic modes (for
the nearly baroclinic modes in the vicinity of the global maximum).

8. Summary remarks
It is well known that the banded structure of the most unstable symmetric mode

tends to become infinitely narrow in the inviscid limit (Fjortoft 1944; Ooyama 1966;
Stone 1966). The presence of diffusivity prevents the bands from becoming infinitely
narrow and thus provides a selection mechanism for the horizontal scale of the most
unstable mode. This selection mechanism is intuitive and well-studied (Emanuel 1979,
1985; Miller 1984, 1985; Xu & Clark 1985; Xu 1987). The presence of diffusivity also
provides a selection mechanism for the horizontal orientation of the most unstable
mode with respect to the basic-flow shear (Miller & Antar 1986; part 1). This
orientation selection mechanism is complex and needs to be interpreted through
several steps of reasoning based on the scale selection mechanism and the results
obtained in this paper. (i) The most unstable mode has a finite horizontal wavelength
in the presence of diffusivity. (ii) When the horizontal wavelength is fixed at a finite
value, the growth of the warm-side (or cold-side) tilted mode is maximally supported
by the symmetric-type energy conversion plus the baroclinic-type energy conversion
in the middle layer (or boundary layers). This explains why with the fixed finite
horizontal wavelength the inviscid growth rate is conditionally maximized when the
band orientation is tilted slightly to either the warm side or cold side of the basic
shear. (iii) As the baroclinic-type energy conversion enhances the middle-layer (or
boundary) structures of the warm-side (or cold-side) tilted mode, the mode structures
are smoothed (or sharpened) near the boundaries (see § § 4.2 and 5.2). Hence, the
warm-side tilted mode is much (or slightly) less severely damped by the increased
diffusivity than the cold-side tilted mode with the non-slip (or free-slip) boundary
conditions. The above three-step reasoning provides a physical interpretation for the
orientation selection mechanism. In particular, it explains why the global maximum
point in the growth rate pattern (obtained with Ri between 0.25 and the inviscid
transitional Richardson number Ri∗ = 0.95) shifts away from the symmetric axis to
the negative side (for the warm-side tilted modes) and why the growth rate pattern on
the positive side of the symmetric axis drops below zero for the non-slip case but not
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for the free-slip case as the diffusivity increases (from Ek =0.0001 to 0.01) (compare
figures 1a and 2a of part 1 with figure 1 in this paper).

As explained in § 3.2, the symmetric-type energy conversion is characterized by
conversions of perturbation energy from the perturbation along-band velocity and
buoyancy to the cross-band circulation. This characterization implies two conditions.
(i) The perturbation along-band velocity and buoyancy need to be supported by
energy conversions from the basic-state along-band velocity and basic-state buoyancy,
respectively, while the latter two conversions should be larger than the above
two perturbation energy conversions, respectively (see (2.6b, c) and figure 15). (ii)
The perturbation along-band velocity and buoyancy should be positively correlated
with the horizontal and vertical velocity components of the cross-band circulation,
respectively, in order to produce the perturbation energy conversions characterized
above. This second condition further implies that the horizontal and vertical motions
in the cross-band vertical plane must be accelerated by the Coriolis force associated
with the perturbation along-band velocity and by the perturbation buoyancy,
respectively. For the nearly symmetric modes, the perturbation Coriolis force and
buoyancy are generated mainly by the cross-band advections of the basic-state along-
band absolute-momentum M and basic-state buoyancy B , respectively, so the above
accelerations are possible only when the perturbation parcel trajectories are steeper
than the M-surface and less steep than the B-surface in the cross-band vertical plane.
These features and related positive feedback are illustrated and interpreted with
detailed structure and energy analyses for the symmetric modes in § 3 and for the
nearly symmetric modes in § § 4 and 5.

The baroclinic-type energy conversion is characterized by energy conversions
from the basic-state buoyancy through the along-band horizontal advection to the
perturbation buoyancy and then to the cross-band circulation. This characterization
implies two conditions. (i) The perturbation buoyancy needs to be supported by
the energy conversion from the basic-state buoyancy that is larger than the energy
conversion from the perturbation buoyancy to the cross-band circulation (see (2.6c)
and figure 17). (ii) The vertical and horizontal perturbation motions in the along-band
vertical plane should both be negatively correlated with the perturbation buoyancy
in order to produce the energy conversions characterized above (to ensure both
−{〈wb〉}Ri and {〈vb〉} sinα are positive in (2.6c)). This second condition further
implies that the perturbation transports warm air northward with rising motion and
transports cold air southward with sinking motion, which is an essential feature for
the growth of the classic baroclinic waves (§ 9.3 of Holton 1979). These features and
related positive feedback are illustrated and interpreted with detailed structure and
energy analyses for the baroclinic modes in § 6.4 and for the nearly baroclinic modes
in § § 6.1–6.3 and 6.5.

For the nearly baroclinic modes, the perturbation buoyancy is generated mainly
by the vertical and along-band advection of the basic-state buoyancy, so the second
condition implied by the baroclinic-type energy conversion also implies that the
perturbation parcel trajectories must be less steep than the basic-state potential
temperature surfaces in the along-band vertical plane. While the growth of the nearly
baroclinic modes is supported by the baroclinic-type energy conversion, it is also
assisted by two additional energy conversions: (i) from the basic-state buoyancy
through the cross-band horizontal advection to the perturbation buoyancy, and (ii)
from the basic-state along-band velocity to the perturbation along-band velocity.
These two additional energy conversions smooth (or sharpen) the near-boundary
structures of the warm-side (or cold-side) tilted nearly baroclinic mode in the inviscid
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limit. Because of this, the warm-side tilted mode is less severely damped than the cold-
side tilted mode by the increased diffusivity, especially with the non-slip boundary
conditions. This explains why the global maximum point in the growth rate pattern
(obtained with Ri larger than the inviscid transitional Richardson number Ri∗ =0.95)
is shifted to the positive side (α > −90◦) of the baroclinic axis (α = −90◦) as the
diffusivity increases (to Ek =0.01) (see figure 1e or 2c of part 1).

The author is grateful to Drs Wei Gu and Ting Lei for developing the spectral
model. The work was supported by the NSF Grant ATM-9983077 to the University
of Oklahoma. Comments and suggestions from Dr Robert Davies-Jones and the
anonymous reviewers improved the presentation of the results.
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